
File Input/Output and Exceptions
Class : II B.C.A

Mrs.R.SAIKUMARI
Assistant Professor

Department of Computer Applications

SRI AKILANDESWARI WOMEN’S COLLEGE, WANDIWASH

SWAMY ABEDHANADHA EDUCATIONAL TRUST, WANDIWASH

11-2

Chapter Topics

We will cover the following topics in this order:

– 11.1.5 The Scanner Class

– 11.1.6 Serialized Object I/O

– 2.4.1 Basic Output and Formatted Output

– 11.2 Files

– 3.7 Exceptions and try .. catch

– 8.3 Exceptions and try .. catch

Review Text Files - Reading

To read in from a file using Scanner, we need to tell the Scanner where to read in

from.

1. import java.io.*;

2. Create a File object and provide it the name of the file

3. Pass the File object to the Scanner

4. Use the hasNext() method to determine if there is still data to read.

5. Use the Scanner’s .next methods to read the data.

6. When done, close the file.

File file = new File("animals.txt");

Scanner input = new Scanner(file);

while(input.hasNext())

{

 String animal = input.nextLine();

 System.out.println(animal);

}

in.close();

Review Text Files - Writing

To write to a file, use the PrintWriter class.

1. import java.io.*;

2. Create a PrintWriter object that takes the file name as input

3. Use the .print(), .println() and .printf() methods to write.

4. Close the PrintWriter. Failure to close the PrintWriter will not

save the contents written.

Reminder: PrintWriter will create the file if it does not exist and

will overwrite the contents if it had content.

PrintWriter myFile = new PrintWriter(“essay.txt”);

myFile.println(“I love Java.”);

myFile.close();

Scanner .next() to Read a Single Word

• In the past, we have been using .nextLine() to read an entire line

from a file. What if we wanted to read just a single String? Use

.next(). It will read until a white space is encountered (could be

an enter, a tab, or a space).

while (in.hasNext())

{

 String s = in.next();

}

Scanner .useDelimiter(…)
• In Java, the default delimiter for the Scanner is white space. This

delimiter tells the Scanner when it should stop looking for the next item

to read.

• The Scanner has a method .useDelimiter (String pattern) which can set

the scanner's delimiting pattern to a pattern constructed from the input

String.

Scanner in = new

Scanner(“input.txt”);

in.useDelimeter(“”);

while (in.hasNext())

{

 char c = in.next().charAt(0);

 // do something with c

}

Example:

Changing the delimiter to

the empty String instructs

the Scanner to stop reading

after every character.

.next() here will give back

one character. So this code

will read one letter at time.

Scanner .useDelimiter() and Patterns

• You can use patterns with the .useDelimiter() method.

• For example, if you want to read only letters and skip all other

characters (including numbers and special characters), you

can use .useDelimiter("[^a-zA-Z]+“)

Scanner in = new

Scanner(“input.txt”);

in.useDelimeter("[^a-zA-Z]+”);

[^abc] Any character except a, b, or c (negation)

[a-zA-Z]
a through z or A through Z, inclusive

(range)

X+ X repeated one or more times

This is saying the

delimiter is anything

that is not (^) the

letters a-z or A-Z

repeated (+)

Parsing a String using Scanner

• A Scanner can take a String as input to parse it.

String line = “Ibtsam M Mahfouz”;

Scanner lineScanner = new Scanner(line);

String first = lineScanner.next();

String middle = lineScanner.next();

String last = lineScanner.next();

• Example with numbers:

String streetNum = “123 Main Street”;

Scanner scanner = new Scanner(streetNum);

int number = scanner.nextInt();

String street = scanner.next() + “ “ +scanner.next();

Scanner’s .hasNext<Type> Methods

• hasNext() — returns a boolean value that is true if there is at least
one more token in the input source.

• hasNextInt(), hasNextDouble(), and so on—return a boolean
value that is true if there is at least one more token in the input
source and that token represents a value of the requested type.

• hasNextLine() — returns a boolean value that is true if there is at
least one more line in the input source.

if (in.hasNextInt())

{

int value = in.nextInt();

. . .

}

Review System.out.printf

• You can use the System.out.printf

method to perform formatted console output.

 System.out.printf(FormatString, ArgList);

FormatString is

a string that

contains text and/or

special formatting

specifiers.

ArgList is optional. It is a

list of additional arguments

that will be formatted

according to the format

specifiers listed in the

format string.

Formatting Output – System.out.printf

int hours = 40;

System.out.printf("I worked %d hrs.", hours);

double pay = 874.12;

System.out.printf("Your pay is %f.\n", pay);

String name = “Ibtsam";

System.out.printf(“My name is %s.\n", name);

Formatting Output – Additional Options

int amount = -40;

// will print (40)

System.out.printf(“%(d hrs.", amount);

// will print (040) – () are counted in the 5.

System.out.printf("%(05f.\n", amount);

String name = “Ibtsam";

System.out.printf(“My name is %S.\n", name);

S

Formatting Output – Additional Options

String item = “computer”;

double price = 499.99;

System.out.printf(“%-10s%10.2f”, item + “:”,

price);

• %-10s

- Formats a left-justified string

- Padded with spaces so it becomes 10 characters wide

• %10.2f

- Formats a floating-point number

- 2 numbers after the decimal

- The field that is ten characters wide.

- Right justified

CW Part-4-1: Input & Output
• Download the Student.java file attached to the CW on Blackboard and use its main template.

• Create a class called Student which stores

• the name of the student

• the grade of the student

• Write a main method that asks the user for the name of the input file and the name of the

output file. Main should open the input file for reading. It should read in the first and last name

of each student into the Student’s name field. It should read the grade into the grade field.

• Calculate the average of all students’ grades.

• Open the output file, for writing, and print all the students’ names on one line and the average

on the next line.

• Average should only have 1 digit after the decimal

• “Average” should be left justified in a field of 15 characters. The average # should be

right justified in a field of 10 spaces.

Compile and test your code in NetBeans and then on Hackerrank at

https://www.hackerrank.com/csc128-part-4-classwork then choose CSC128-Classwork-Part-4-1

Submit your .java file and a screenshot of passing all test cases on Hackerrank.

Minnie Mouse 98.7

Bob Builder 65.8

Mickey Mouse 95.1

Popeye SailorMan 78.6

Sample

Input

Output
Minnie Mouse, Bob Builder, Mickey Mouse, Popeye SailorMan

Average: 84.6

https://www.hackerrank.com/csc128-part-4-classwork

11-15

Exceptions
• An exception is an exception to the normal flow

of control in the program. The term is used in

preference to “error” because in some cases, an

exception might not be considered to be an error at

all.

• Exceptions in Java are represented as objects of

type Exception.

• If exceptions are not handled, the program will

crash and the default exception handler will print

the stack trace showing where the exception was

thrown in the code.

11-16

Exceptions – using try/catch
• When an exception occurs, we say that the exception is thrown. For example,

we say that Integer.parseInt(str) throws an exception of type
NumberFormatException when the value of str is illegal.

• When an exception is thrown, it is possible to catch the exception and
prevent it from crashing the program. This is done with a try/catch statement.

 try

{

 try block statements

}

catch (ExceptionType ParameterName)

{

 catch block statements

}

The program executes the statements in the try
block. If no exception occurs the program skips the
catch part and proceeds with the rest of the
program.

If an exception occurs during the execution of the
try block, the program immediately jumps from
the point where the exception occurs to the catch
part and executes the catch block statements,
skipping any remaining statements in the try block.

11-17

Exception Types – Examples
• When specifying the catch clause, you need to specify the type

of exception to catch based on the code in the try block.
double x;
String str = scanner.next();
try {
 x = Double.parseDouble(str);
 System.out.println("The number is " + x);
}
catch (NumberFormatException e)
{
 System.out.println(str + “is not a legal number.");
}

String filename = scanner.nextLine();
try {
 File f = new File(filename);
 Scanner inFile = new Scanner(f);
}
catch (IOException e)
{
 System.out.println(“Failed to open “ + filename);
}

11-18

Exception Types – Incompatible Types

double x;
String str = scanner.next();
try {
 x = Double.parseDouble(str);
 System.out.println("The number is " + x);
}
catch (IOException e)
{
 System.out.println(str + “is not a legal number.");
}

• If the exception being thrown is not the one caught, the code will still crash!

• This code will throw a NumberFormatException. Since this code is not
catching the correct exception, the code will still crash.

11-19

Once an Exception in Caught

The exception object in the catch has useful methods:

• getMessage(): returns the default error message for the

exception.

• printStackTrace(): writes a stack trace to standard

output that tells which methods were active when the

exception occurred. A stack trace can be very useful when

you are trying to determine the cause of the problem.

(Note that if an exception is not caught by the program,

then the default response to the exception prints the stack

trace to standard output.)

11-20

try

 {

 String filename = "d:\\test.txt";

 Scanner in = new Scanner(new File(filename));

 int sum = 0;

 while (in.hasNext())

 {

 String input = in.next();

 int value = Integer.parseInt(input);

 sum = sum + value;

 }

 System.out.println("Sum: " + sum);

 }

 catch (IOException exception)

 {

 exception.printStackTrace();

 }

 catch (NumberFormatException exception)

 {

 exception.printStackTrace();

 System.out.println(exception.getMessage());

 }

Catching Multiple Exceptions

11-21

Exception Classes

An Exception is an Object.

11-22

Exception vs. Error

• Most of the subclasses of Error represent series

problems that you as a programmer should not try

to handle. They usually represent problems that

occurred within the Java virtual machine.

• We will handle exceptions that are subclasses of

Exception.

11-23

try

 {

 …

 }

 catch (IOException exception)

 {

 exception.printStackTrace();

 }

 catch (NumberFormatException exception)

 {

 exception.printStackTrace();

 System.out.println(exception.getMessage());

 }

Catching Multiple Exceptions

try

 {

 …

}

 catch (IOException | NumberFormatException exception)

 {

 exception.printStackTrace();

 }

try

 {

 …

}

 catch (Exception exception)

 {

 exception.printStackTrace();

 }

This code will only catch

IOException and

NumberFormatException

This code will catch all

Exceptions.

11-24

Finally Clause
• The try statement can have an

optional finally clause after the
catch clauses.

• The finally clause is guaranteed

to be executed as the last step in

the execution of the try statement,

whether or not any exception

occurs and whether or not any

exceptions that do occur are

caught and handled.

• The finally clause is meant for

doing essential cleanup that under

no circumstances should be

omitted. One example of this type

of cleanup is closing a file or a

network connection.

try

{

 try block statements...
}

catch (ExceptionType varName)

{

 catch block statements...
}

finally

{

 finally block statements...
}

11-25

Propagating Exceptions
• All exceptions thrown must be handled in a Java program.

• If your program does not handle it, the default exception
handler will handle it by halting the execution of the
program and printing the stack trace.

• If an exception happens inside a method and this method
does not have an exception handler, control is passed up
the call stack to the calling method. It will propagate back
until it reaches the main method.

• The main method will either handle it or the default
exception handler will handle it and print the stack trace.

public static void doWork() throws IOException

{

 String filename = "e:\\test1.txt“;

 Scanner in = new Scanner(new File(filename));

 int sum = 0;

 while (in.hasNext())

 {

 String input = in.next();

 int value = Integer.parseInt(input);

 sum = sum + value;

 }

 System.out.println("Sum: " + sum);

}

public static void main(String[] args)

{

 try

 {

 doWork();

 }

 catch(Exception exception)

 {

 exception.printStackTrace();

 System.out.println(exception.getMessage());

 }

}

11-27

Checked and Unchecked Exceptions

Exceptions can either be :

• Unchecked: These are the exceptions that are derived from the Error class or

the RuntimeException class and you do not need to handle in your code.

• Checked: These are exceptions that require mandatory handling. These come

from methods who have declared that they throw exceptions by adding throws

<ExceptionType> in their method header.

// This method will not compile!

public void displayFile(String name)

{

 // Open the file.

 File file = new File(name);

 Scanner in = new Scanner(file);

 ...

}

To fix it:

public void displayFile(String name)

 throws FileNotFoundException

11-28

CW Part-4-2: Exceptions

• Download the Student.java file attached to the CW on Blackboard

and use its main template.

• Modify the code written for CW Part-4-1 to detect if any line does

not contain the three fields: first name, last name and grade or if the

grade is not parse-able to a float. Catch any exceptions thrown, print

the message from the exception and a meaningful error message

along with the problem line.

• The exception/error message should be for the line that is not

correct only. Main should continue parsing the remaining lines.

Compile and test your code in NetBeans and then on Hackerrank at

• https://www.hackerrank.com/csc128-part-4-classwork then choose

CSC128-Classwork-Part-4-2

Submit your .java file and a screenshot of passing all test cases on Hackerrank.

https://www.hackerrank.com/csc128-part-4-classwork

11-29

Programming with Exceptions

You can write code that throws an exception if it encounters an error.

You can either:

– use the built in Exception class to throw an exception with an

appropriate error message

– create a new exception class that extends Exception and add the

appropriate constructors.

throw new Exception(“Unable to withdraw amount”);

11-30

public class NegativeBalanceException extends Exception

{

 /**

 This constructor uses a generic error message.

 */

 public NegativeBalanceException()

 {

 super("Error: Negative balance");

 }

 /**

 This constructor specifies the balance & amount causing it to become negative

 */

 public NegativeBalanceException(double balance, double amount)

 {

 super("Error: Balance is " + balance +

 ". Deducting " + amount + " will make it negative");

 }

}

/**

 * @param startBalance

 * @throws NegativeBalanceException

 */

 public BankAccount(double startBalance) throws NegativeBalanceException

 {

 if (startBalance < 0)

 throw new NegativeBalanceException();

 balance = startBalance;

 }

/**

 * @param amount

 * @throws NegativeBalanceException

 */

 public void withdraw(double amount) throws NegativeBalanceException

 {

 if(balance - amount < 0)

 throw new NegativeBalanceException(balance, amount);

 }

Nested Try/Catch
String[] array = { null};

 for(String s : array)

 {

 try

 {

 System.out.println(Integer.parseInt(s));

 }

 catch(Exception e)

 {

 try

 {

 System.out.println("invalid value " + s);

 FileWriter f = new FileWriter("z:\\errors.txt", true);

 PrintWriter pw = new PrintWriter(f);

 pw.println("invalid value " + s);

 pw.close();

 }

 catch(Exception ee)

 {

 System.out.println(ee.getMessage());

 }

 }

1st try/catch

responsible

for catching

Strings that

are not

integers.

2nd try/catch

responsible for

printing an error

message to a

file. But opening

the file will

cause another

exception if the

path is wrong.

11-33

Javadocs: @exception Tag

• Use the @exception tag in the comments to document that

a method throws an exception.

• It should appear after the description of the method.

@exception ExceptionType Description

11-34

CW Part-4-3: Exception Class

• Download the Student.java file attached to the CW on Blackboard and

use its main template.

• Modify the Student constructor written for CW 11-2 to detect if any line

contains a grade less than 0 or greater than 100. If it does, it should

throw an exception.

• Write your own exception class to do the above task. It could have

several constructors to handle the different error cases.

• Modify main to handle the new exception thrown from the Student

constructor. It should continue processing the valid lines.

Compile and test your code in NetBeans and then on Hackerrank at

https://www.hackerrank.com/csc128-part-4-classwork then choose

CSC128-Classwork-Part-4-3

Submit your .java file and a screenshot of passing all test cases on Hackerrank.

https://www.hackerrank.com/csc128-part-4-classwork

11-35

Homework (50 Points)
1. Create an exception class called InvalidStringException which can handle two types of errors:

– A String that is too long. The program detecting the exception should pass the length of the

String and the maximum allowed length

– A String that contains digit characters.

2. Write a class ValidStrings which stores an ArrayList of Strings.

– Its constructor should take the maximum length allowed.

– It should have an add method which takes a String and adds it to the ArrayList if it is valid

(length and does not contain digits). If the String is invalid, it should throw an appropriate

InvalidStringException.

3. Write a main method that:

– Asks the user for the name of the input file.

– Asks the user for the maximum string length allowed.

– Creates a ValidStrings object.

– Opens the input file for reading. It will read one word at a time (all words will be on the same

line) and tries to add it to the ValidStrings object. If it fails, it should print the exception

message returned and continue processing the rest of the file.

– Print the Strings in the ArrayList in the ValidStrings object separated by spaces.

Compile and test your code in NetBeans and then on Hackerrank at

https://www.hackerrank.com/contests/csc128-programmingassignments then choose CSC128-Part-4-PA

Submit your .java file and a screenshot of passing all test cases on Hackerrank.

https://www.hackerrank.com/contests/csc128-programmingassignments

Acknowledgment

"Java II – Part 4 – Input, Output and

Exceptions" by Ibtsam Mahfouz, Manchester

Community College is licensed under CC BY-

NC-SA 4.0 / A derivative from the original

work

http://www.manchestercc.edu/
http://www.manchestercc.edu/
http://creativecommons.org/licenses/by-nc-sa/4.0
http://creativecommons.org/licenses/by-nc-sa/4.0
http://math.hws.edu/javanotes/
http://math.hws.edu/javanotes/

